tuesdata <- tidytuesdayR:: tt_load ('2023-12-26' )
--- Compiling #TidyTuesday Information for 2023-12-26 ----
--- There are 3 files available ---
--- Starting Download ---
Downloading file 1 of 3: `cran_20221122.csv`
Downloading file 2 of 3: `external_calls.csv`
Downloading file 3 of 3: `internal_calls.csv`
--- Download complete ---
## OR
tuesdata <- tidytuesdayR:: tt_load (2023 , week = 52 )
--- Compiling #TidyTuesday Information for 2023-12-26 ----
--- There are 3 files available ---
--- Starting Download ---
Downloading file 1 of 3: `cran_20221122.csv`
Downloading file 2 of 3: `external_calls.csv`
Downloading file 3 of 3: `internal_calls.csv`
--- Download complete ---
cran_20221122 <- tuesdata$ cran_20221122
external_calls <- tuesdata$ external_calls
internal_calls <- tuesdata$ internal_calls
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.3 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Attaching package: 'tidygraph'
The following object is masked from 'package:stats':
filter
What are the top packages by centrality?
I’m actually really surprised that the top ranking package by centrality is {duckdb}
. It’s really become very ubiquitous.
cran_20221122 |> dplyr:: filter (centrality_dir_mn_no0 > 2000 ) |>
mutate (package= fct_reorder (package, centrality_dir_md_no0)) |>
slice_max (centrality_dir_md_no0, n= 20 ) |>
ggplot () + aes (x= package, y= centrality_dir_md_no0) +
geom_col () + theme (axis.text = element_text (angle = 0 )) + coord_flip ()
cran_20221122 |> #dplyr::filter(centrality_dir_mn_no0 > 2000) |>
mutate (package= fct_reorder (package, node_degree_max)) |>
slice_max (node_degree_max, n= 20 ) |>
ggplot () + aes (x= package, y= node_degree_max) +
geom_col () + theme (axis.text = element_text (angle = 0 )) + coord_flip ()
Centrality Measures
my_graph <- cran_20221122 |>
ggplot () +
aes (x= centrality_dir_md_no0, y= centrality_dir_md, package= package) +
geom_point ()
plotly:: ggplotly (my_graph)
The undirected versus directed measures are less correlated, indicating there are some packages that have high undirected centrality but not high directed centrality.
my_graph <- cran_20221122 |>
ggplot () +
aes (x= centrality_undir_md_no0, y= centrality_dir_md_no0, package= package) +
geom_point ()
plotly:: ggplotly (my_graph)
Documentation versus Centrality
my_graph <- cran_20221122 |>
dplyr:: filter (centrality_dir_md_no0 < 1000 ) |>
dplyr:: filter (docchars_per_par_exp_md < 1000 ) |>
ggplot () +
aes (x= docchars_per_par_exp_md, y= centrality_dir_mn_no0, package= package) +
geom_point ()
plotly:: ggplotly (my_graph)
Citation BibTeX citation:
@online{laderas2023,
author = {Laderas, Ted},
title = {Tidy {Tuesday} {R} Packages},
date = {2023-12-26},
url = {https://laderast.github.io/posts/r-packages.html},
langid = {en}
}
For attribution, please cite this work as:
Laderas, Ted. 2023.
“Tidy Tuesday R Packages.” December 26,
2023.
https://laderast.github.io/posts/r-packages.html .