
Part 2: Reactivity
Ted Laderas

Fred Hutch Cancer Center

This section is for:

● Those who never really understood reactivity
● Don’t know what the difference is between observeEvent() and

eventReactive()

● Want to know what ExtendedTask does

Why Reactivity?

● Event-driven programming
○ Event: Change in inputs or

reactives
● Only update outputs when

necessary (lazy)

● The bad old days: UI polling
● Poke every 100 ms at a UI

element
○ Have you changed yet?
○ Have you changed yet?
○ Have you?

Shiny works best when you give it control

● Don’t tell Shiny when and how to update, only how to update
● Give Shiny control to update as it sees fit
● Don’t force order of operations - causes problems
● You need to trust Shiny

Reactivity

● All calculations are dependent on the reactive graph
● Depending on how inputs, reactives, and outputs are connected
● Only recalculate for visible outputs that have changes in inputs
● The reactive graph invalidates on changes in inputs / reactives

Input

input$select
reactiveValues()

“Producers”

reactive()

data <-
reactive({})

“Consumers”/
“Producers”

Key Players

“Consumers”

Output

output$plot
observe()

The Reactive Graph

● Calculates visible outputs (such as plots) based on changes in inputs and
reactives

● Initial calculation leads to an “equilibrium” state of graph
● Changes in inputs invalidate outputs and connected reactives
● Data flows from Inputs -> reactives() -> Outputs

{reactlog}

Lets you visualize the flow of information through the reactive graph

Invaluable for understanding how events trigger recalculation

Does not measure time of calculation

Use {profvis} for that

input$species

input$island

Output

renderPlot({
 input$species,
 input$island
})

renderPlot() is
directly wired to both
inputs; any changes
in inputs will cause

plot to update

Direct Connections runApp(“reactives/app_direct.R”)

Quick reactlog demo

reactive()

- Dynamic (responds to other reactives or inputs)
- Returns a value (such as a data.frame)
- Decouples inputs from outputs
- Avoids recalculation unless necessary

Input

input$species

reactive()

my_data <-
 reactive({
 penguins |>
 filter(species ==

input$species)
})

reactive()s
respond to changes
in inputs, produce a

value for outputs

reactive() runApp(“reactives/app_reactive.R”)

Output

renderPlot({
 my_data()
})

Call reactive() as
a function

Output

renderPlot({
my_data()
})

Input

input$species

Input

isolate(input$island)

reactive()

my_data <-
 reactive({
 input$species,
 isolate(input$island)
})

Use isolate() to
remove an input
from the reactive

graph

isolate()
runApp(“reactives/app_isolate.R”)

Exercise

- With your neighbor, compare the following two apps with reactlog (run the
app, and use CTRL+F3 or CMD+F3)
- runApp(“reactivity/app_reactive.R”)

- runApp(“reactivity/app_isolate.R”)
- How do the graphs differ?
- Change the two controls and step through the graph - what are the

differences?

Events

● Want app to respond to some sort of event or change
● Usually an actionButton
● but could also be a reactive()

Pure Functions vs. Side Effects

Pure Functions

Return some sort of value that is used
downstream triggered by event (reactives)

Side Effects

Used only for side effects triggered by event
(doesn’t return a value)

Pure Functions vs. Side Effects

Pure Functions

Return some sort of value that is used
downstream triggered by event (reactives)

Examples:
Reading a file,
Calculating a new variable,
Filtering data

Side Effects

Used only for side effects triggered by event
(doesn’t return a value)

Examples:
Updating a Database,
Updating UI elements,
Saving data to a file

Pure Functions vs. Side Effects

Pure Functions

Return some sort of value that is used
downstream triggered by event (reactives)

Examples:
Reading a file,
Calculating a new variable,
Filtering data

Side Effects

Used only for side effects triggered by event
(doesn’t return a value)

Examples:
Updating a Database,
Updating UI elements,
Saving data to a file

use observeEvent() or

observe() |> bindEvent()

eager execution

use eventReactive() or

reactive() |> bindEvent()

lazy execution

eventReactive()

my_er <-
 eventReactive(

input$act_button,
{input$island,

 input$species}
)

Input

input$act_button

Output

renderPlot({
 my_er()
})

Input

input$island

Input

input$species

Use eventReactive()
to only update a reactive

on an event (button
press, change in another

reactive)
Put reactive code after

event trigger in {}

runApp(“reactivity/app_eventReactive.R”)

reactive()

my_data <-
 reactive({
 input$island,
 input$species}) |>
bindEvent(input$act_button)

Input

input$act_button

Output

renderPlot()

Input

input$island

Input

input$species

Use bindEvent() to
make a reactive()
respond only to an

event

Saves some typing /
less error prone than

changing
reactive() to

eventReactive()

runApp(“reactivity/app_bindEvent.R”)

Why does lazy execution matter?

● Shiny tries to minimize the number of calculations
● Only tries to calculate outputs that are visible
● Reactive graph helps decide when to recalculate
● Invalidation -> calculation -> ready to display

observeEvent(
input$act_button,{
 dbAppendTable()
})

input$act_button

Input

input$island

Input

input$species

Use observeEvent() only for
actions that don’t generate a value,
such as database updates. It will run
right away (eager execution)

observe({dbAppendTable()}) |>
bindEvent(input$act_button)

runApp(“reactivity/app_observeEvent.R”)

Don’t mix values and side effects

Keep your side effects

Outside of your reactives

Or I will kill you.

Joe Cheng

Put values in a separate
eventReactive() and the side
effects in a separate
observeEvent() that respond to
the same event

Good uses of observeEvent()

- Dynamically updating UI based on User Inputs
- updateSelectInput example

- Writing lines to a database
- Printing to the console
- Saving a File
- Doing R Stuff that doesn’t produce any output

observe() + reactiveValues()

● Often an anti-pattern
● Programmers try to use it to force order of execution
● Is very hard to test because of race conditions when multiple observe()

statements are updating a reactiveValues() object
○ Example: reactiveValues with bank balance

● Use sparingly
● ExtendedTask is an exception

Exercise

- Do this with your neighbor and discuss
- Compare the reactive graphs between (CTRL+F3 or CMD+F3)

- runApp(“reactivity/app_eventReactive.R”)

- runApp(“reactivity/app_observeEvent.R”)

- How are they wired differently?
- Try triggering the event (pushing the button) and step through the graph

Reactivity: Optimizing

Optimizing Your Shiny App

● Common Sense Stuff
● reactivePoll()

● ExtendedTask

● bindCache()

Common Sense Stuff

● Define “real-time” for your app
● Decouple data pulls from your shiny app if possible
● Scheduled process that pulls every 10 minutes for example
● Precompute as much as possible (memory is cheap, compute time is not)

reactivePoll()

● Use for expensive data updates
● Use when connected to a data source that updates itself
● Only updates the reactive when the data has changed
● You need to write a function that tests for changes in it

bslib::input_task_button() for ExtendedTask

Won’t trigger an event multiple times

runApp(“app_input_task_button.R”)

ExtendedTask

● Lets you run a long running operation in the background (slow API call, etc)
● Non-blocking: you and other users can work with your app without being

interrupted by the long task
● Uses future_promise() to spin off into its own R-session
● Running models, long calculations, etc
● ExtendedTask is an R6 object
● YouTube Video: https://www.youtube.com/watch?v=GhX0PcEm3CY

https://www.youtube.com/watch?v=GhX0PcEm3CY

Setup for ExtendedTask

library(future)

library(promises)

future::plan(multisession)

Add this in your
setup code (before

ui and server)

Sets up multiple
sessions for future
(lets you spin off

R-sessions)

ExtendedTask is Two parts

observeEvent
Component (does

not block other
operations)

Results Component
(reactiveValues() has a

different output depending on
state of task)

ExtendedTask Methods (use in server)

Use $new method
to make a new
ExtendedTask

Use $invoke
method to start a
task up (runs in a
separate session)

Use $result
method to use

results

ExtendedTask

my_task$invoke(input$x)

ExtendedTask

my_task <-
ExtendedTask$new(
 future_promise(
 function(x){}
))

ExtendedTask

my_task$result

input$act_button

input$x

observeEvent(
input$act_button,{
 my_task$invoke(

input$x)
})

my_task$invoke

Output

renderPlot({
my_task$result})

my_task$result

runApp(“reactivity/app_ExtendedTask.R”)

[....]

Runs actual task in
a separate R

session

Exercise (if we have time)

Examine the Reactive Graph using reactlog for the following application:

- runApp(“app_ExtendedTaskSingle.R”)

Click the button and trace the path

bindCache()

● Shiny usually only caches the last
value

● bindCache() lets you cache
values based on an event

○ Shared across all users of the app
○ Can change to per-session

● Can be a reactive or a plot
● Saves initial computation to reduce

load time

